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Abstract

The origin of the acoustic emissions from booming and singing sands is sought in the existence of modes of vibration

in the granular beds composed of such sands. These granular beds are assumed to be sufficiently fluidized so that the

equations of fluid mechanics are applicable. It follows from these equations and the concept of mechanical flux density

that there are regions of failure in the granular beds where the fluctuation velocity is maximum. The regions of failure

become the slip channels where the grain layers slip over each other towards regions of lower pressure, acting at the

same time as energy sources of the acoustic emissions. The predicted frequency spectra of such emissions, which are

defined primarily in the surface boundary layer, compare fairly well with those recorded experimentally. The acoustic

phase velocity in the channels is close to 1m/s, while that in the surface boundary layer is considerably lower. The origin

of thermal moonquakes is sought in the squeezing of the granular beds in rock crevices. States of high compactness and

high fluidity are predicted, the latter leading to the suggestion that crater erosion ridges on Mars are due to grain

avalanches. The absence of boomability in snow avalanches could be due to the lack of a fluidized surface boundary

layer. There is evidence to the effect that the boomability or singability of a granular bed is determined principally by

the shape and surface texture of the grains, the rate of dissipation of the elastic modes of vibration in the grains and the

degree of geometric confinement of the granular bed. The acoustic emissions occur during the latter phase of the slip or

delatancy stage, which is preceded by the stick or compactness stage, when the elastic modes are excited.

r 2002 Published by Elsevier Science Ltd.

1. Introduction

When wind-swept sand grains pile up on top of certain large dunes and then avalanche, a loud booming acoustic

emission can occur with a dominant frequency in the range 50–200Hz (Lewis, 1936; Bagnold, 1941; Humphries, 1966;

Criswell et al., 1975; Lindsay et al., 1976; Haff, 1986; Nori et al., 1997; Sholtz et al., 1997 During van avalanche, blocks

or slabs of sand, about 15 cm thick, break off and slide downhill. According to Lewis (1936), ‘‘the sound emission

resembled the rumbling of a distant thunder from a few hundred yards away, while at closer distance it resembled that

of an airplane or a motor lorry starting up’’. A more common acoustic emission of this nature occurs when the surface

of certain beach sands is sheared with a plate, or even with the palm of the hand, at about 451 from the normal to the

sand surface, or when it is stepped upon. Such sands are characterized as singing, sonorous, musical or squeaky, the

dominant frequency being in the range 500–1500Hz (Brown et al., 1961,1964; Nishiyama and Mori 1982; Miwa et al.,

1983; plus all above citations).

The subject of the booming and singing sands was treated from the point of view of pure scientific curiosity until the

lunar landings when seismic events, termed thermal moonquakes, were recorded near moon craters (Duennebier and
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Nomenclature

B bulk modulus of the fluidized granular bed

d average grain diameter

e coefficient of restitution

ec energy loss into heat during collision of two grains, Eq. (A.8)

E Young’s modulus

f frequency of vibration

fd dominant frequency of vibration

h depth of the fluidized bed

hs depth of the slip channel

I energy converted into heat per unit volume per second due to grain-grain collisions, Eqs. (A.25) and (A.31)

Iij dimensionless parameters in the expressions for p and s
p total pressure in the granular bed

po pressure in the granular bed due to external forces

pa pressure in the granular bed due to acoustic wave motion

q1 dimensionless factor in the expression for s; Eq. (A.17)
q2 dimensionless factor in the expression for p; Eq. (A.18)
q01 equal to q1 times %v=Du

Q mean fluidization energy flux density, Eq. (A.27)

rc collision rate of the grains = 1=2ð%v=sÞ
R average grain radius

s average distance between grains

ua particle velocity due to acoustic wave motion

Du relative particle velocity between layers, in the flow direction

Duy relative particle velocity between layers, normal to the flow direction, during delatancy

%v random fluidization velocity

%vo amplitude of %v in its variation with bed depth, Eq. (14)

%v=Dujo value of the velocity ratio %v=Du

for which b-N for given m and e; Eq. (12)
V real acoustic phase velocity, Eqs. (16) and (20)

Vs value of V at the center of the slip channel

Vc complex phase velocity, Eqs. (4) and (24)

w width of the slip channels

wf channel width factor, Eq. (18)

a maximum surface displacement at the point of contact during collision of two spheres

b extent of the fluidization, Eqs. (12) and (13), in the case of an unsingable granular bed. In the case of a

singable-boomable bed, b is the distance between channels divided by 2p and approximately equal to the

effective width of the slip channels, Eqs. (14), (18) and (19)

G dimensionless parameter expressed in terms of m and e; Eq. (A.31). It is a measure of the inelastic nature of
the grain–grain collisions

D dimensionless parameter measuring the mechanical energy leaving the granular bed during delatancy,

Eq. (15)

Z coefficient of viscosity, Eq. (A.21)

yo upper limit of the polar angle y; Fig. A1 and Eq. (28)

ld wavelength corresponding to the dominant mode of vibration, equal to the width of the channel, Eq. (18)

lB Bagnold’s linear concentration parameter = d=s

m coefficient of friction

n the Poisson ratio

x particle displacement in wave motion

r granular mass density

s shear stress, Eq. (A.16)

t relaxation time, Eq. (9)
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Sutton, 1974). These moonquakes begin rather abruptly about 2 earth days after the lunar sunrise and decrease rapidly

after sunset. Their dominant frequency is about 5Hz and their duration more than 60 s. However, the overall

appearance of the time signals from these events resembles those from the booming and singing sands.

Sholtz et al. (1997), in a review paper, discussed at length the various hypotheses advanced to explain the physics of

such acoustic emissions. Bolton (1889) argued that the acoustic emissions are due to vibrations of elastic air cushions

between the grains. However, the emissions from a sand bed in a bell jar were shown to be independent of the air

pressure in the jar (Criswell et al., 1975). Poynting and Thomson (1922) argued that in a closely packed array, composed

of perfectly spherical and mono-sized grains, oscillations could arise when several, if not all, grain layers rise

simultaneously to overtake those below and then fall back to the closely packed geometry. However, most of the

acoustically active granular beds are not composed of such grains and those that are, beds of glass beads for example,

are not necessarily acoustically active.

Bagnold (1966) advanced the only known semi-quantitative explanation of the mechanism responsible for such

emissions. He assumed the existence of a single shear surface (slip plane or shear plane) at some depth hs from the surface

of the avalanching sand and reasoned that the collisions of the grains in the layer above the slip plane with those in the

layer below result in a net upward force on the overburden above the slip plane. The momentum transfer in the upward

direction from a given collision and the collision rate are proportional to the relative flow velocity Du across the slip

plane, resulting in a lift force on the overburden proportional to Du2: In effect, he argued that all grains on the upper

layer collide nearly simultaneously with those on the layer below, as if they were nearly fixed in a rigid-like geometric

configuration. Following a collective impact, the overburden rises a distance close to d/14 and then falls freely. The

inverse of the time of free rise and fall is equal to the frequency of oscillation of the overburden, which varies as the

square root of the gravitational constant g divided by the average grain diameter d: In the case of the forced singing sand,
it was argued that the normal stress originating with the driving agent (the plunger) is much larger than the weight of the

overburden, resulting in a much larger effective gravitational constant and thus a much larger emission frequency.

However, it is difficult to visualize how such a single slip plane can exist in a fluidized sand bed where the grain shape

is far from spherical and the average grain diameter can vary from 0.1 to 0.6mm (Brown et al., 1961,1964; Humphries,

1966; Ridgway and Scotton, 1973; Lindsay et al., 1976; Miwa et al., 1983; Leach and Chartrand 1994; Nori et al., 1997).

The relatively recent report (Kilkenny et al., 1997) on the sonorous properties of silica gel powder, used for humidity

control purposes, further exemplifies the point. Lewis (1936) claimed to have produced roaring sound from grains of

common salt by heating sorted grains.

The single slip plane model cannot account for the complexity of the frequency spectra originating with the

avalanching booming sand at the Sand Mountain in Nevada, USA, (Criswell et al., 1975), with the forced (impacted)

sand in a dish (Qu et al., 1995), or with the frog sand recorded by this author. Further, such a simple model cannot

account for the frequency of interruption in the acoustic emissions, which for the case of the frog sand is close to 10Hz,

the dominant frequency being close to 700Hz. In the case of the avalanching booming sand, these frequencies are scaled

down by a factor of about 10 (Lewis, 1936; Humphries, 1966; Criswell et al., 1975). The name ‘‘booming sand’’

c dynamic angle of sliding, Eq. (A.19)

o angular frequency of vibration = 2pf

Glossary

Compactness and delatancy:

The coming together and the going apart of the grain-layers, during the state of flow in the granular bed, in

an accordion-like motion perpendicular to the direction of flow.

Coefficient of restitution:

The ratio of the relative velocities of two spheres after and before a head-on collision.

Fluidization:

The state of a granular bed where the grains acquire a random velocity by becoming energized by flow

velocity gradients, similarly to the thermal velocity of the molecules of a gas system.

Saultation or saltation:

The jumping, bouncing or leaping of the grains at the surface of a granular bed, which is energized by flow

velocity gradients, or equivalently, by forcing the bottom of the bed to vibrate.

Stick–slip effect:

The effect where the resistive force of the granular bed on the penetrating plunger increases and decreases

repetitively, resulting in a stick–slip motion of the plunger.
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originated with the approximately 1Hz frequency of interruption, otherwise known as ‘‘the beat frequency’’ (Sholtz

et al., 1997). Evidently, a theoretical treatment of the subject ought to provide reasons why some sands sing with

relative ease, while others sing with great difficulty and only under certain conditions of confinement.

Slip planes can be seen in the radiograph by Miwa et al. (1983) as channels of sand flow having finite width; this

radiograph is included here in Fig. 3. It is estimated that the average width of these slip channels is about 5mm and that

there are close to 10 sand layers slipping over each other, assuming an average grain diameter d ¼ 0:5 mm: It is stated in
Miwa et al. (1983) that the sonorous emission coincides with the occurrence of such channels. If a channel is viewed as

an elastic medium having width w ¼ 5 mm and average acoustic phase velocity V ¼ 1 m=s; the first overtone having
wavelength l ¼ w corresponds to the frequency of 200Hz, which could be interpreted as the dominant frequency

reported in Miwa et al. (1983).

When a granular bed is sheared by external forces, it becomes energized or fluidized in the sense that the grains

acquire an average random velocity, %v; referred to as the fluctuation velocity or the pseudothermal velocity, not unlike

the average thermal velocity in a molecular gas (Cowin, 1978; Ogawa, 1978; Savage, 1978; Shen and Ackermann 1982;

Haff, 1983; Jaeger and Nagel 1992; Thompson and Grest 1992; Thompson, 1993). In this context, Haff (1983) utilized

the equations of fluid mechanics in the study of mass flow in a fluidized granular medium. However, Jaeger and Nagel

(1992) pointed out that, ‘‘such a procedure is fraught with difficulties and leads to instabilities in the equations’’. In a

regular molecular gas, two molecules are assumed to collide only once in a given encounter. It will be seen below that in

the case of the avalanching sand, about 50 collisions are effected between two grains during the time one grain

overtakes the other. Evidently, in such a regime the Bagnold linear concentration parameter, lB ¼ d=s; has to be

considerably larger than 1, where s is the average grain separation distance. At the other end, lB has to be smaller than

about 17 in order for flow to occur, according to Another major difference between the two systems is that in a

molecular gas, the thermal velocity %v is determined by the temperature T ; while in a fluidized granular bed the

pseudothermal velocity %v is determined by the relative flow velocity Du between adjacent layers. It will be seen that Du

lies in the neighborhood of 1 cm/s, implying stick–slip effects, according to Thompson and Grest (1992).

In deriving the equations for the pressure p and the shear stress s from the equations governing the collision

mechanics between elastic spheres (Goldsmith, 1960; Timoshenko and Goodier, 1970), the velocity ratio %v=Du emerges

as a new independent variable. It will be seen that %v=Du; the grain diameter d and the coefficients of dynamic friction m
and restitution e; completely characterize the granular bed.

Haff (1983) showed that when enough heat energy is generated in the grain mass due to high values of the shear stress

s; the fluctuation velocity %v varies with the grain depth y in a periodic manner. It turns out that this periodic spatial

variation provides the main key for unraveling the secrets of the booming and singing sand phenomena. Haff (1983)

argued that a sound signal in the granular bed propagates with the velocity V ; which is equal to the distance d þ s

divided by the time interval, s=%v; required by a grain to travel the distance s; assuming that the velocity of sound inside

the grains is relatively very large. He presented a plot of V versus y; which has a velocity well located at the center of the
Couette flow geometry. Such a velocity well can be interpreted to correspond to a spring, or to an elastic bar, where the

linear density r is constant but the spring constant ks is smallest at the center and increases on either side.

The derivations of the expressions for p and s in terms of %v; s and %v=Du are included in Appendix A in order to avoid

cluttering Section 2 in the main text. For the same reason, the Navier–Stokes equation of motion, the energy equation

and the derivation of the expression for the energy dissipation due to the inelastic nature of the grain–grain collisions

are included in Appendix A. It is assumed that the lack of sphericity and at times the lack of near sphericity of the

colliding grains affects only moderately the expressions for p and s; implying that grain sphericity and size distribution

can be set aside in the context of this study.

2. Theory

2.1. Wave motion

In order to investigate the existence of acoustic modes of vibration in a fluidized granular bed, it is necessary to

determine the elastic properties of the medium, i.e., the bulk modulus B and the viscosity Z as functions of the depth y

(Figs 1 and 2). The volume density r was determined to be close to 1700:0 kg=m3 in the case of the booming sand. The

expression for the pressure p in a granular bed is

p ¼ po þ rgy þ pa; ð1Þ

where po is the externally applied pressure by the plate in Fig. 1 and pa is the acoustic pressure. With i ¼ y in

Eq. (A.22) and uy ¼ ua = the acoustic velocity, the following equation of motion is obtained, where there
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is no variation with x; z

r
@ua

@t
¼ �

@pa

@y
þ 2

@

@y
Z
@ua

@y

� �
: ð2Þ

The term rukð@ui=@xkÞ was neglected compared to the term containing the coefficient of viscosity Z; since the latter
contains the differential 1=@y twice and @yEd : From Eq. (A.21), it follows that Z is proportional to the collision rate

Fig. 1. Schematic of a rigid plate shearing the surface of a grain bed in a direction about 451 from the vertical. The pressure induced by

the plate is po: The bands at the depths hs1; hs2; hs3 represent the slip channels in which the grains flow towards the surface of the sand

bed. The width of the channels is shown as w:

Fig. 2. (a) Schematic of a grain bed of depth h avalanching at the angle c from the horizontal direction. The overburden above the slip

channel, at the depth hs; is transported downhill by the slipping layers in the channel. The surface boundary layer is not shown. (b)

Schematic of a vertical cross-section of the cylindrical cell containing the frog sand, held in a horizontal position. The inner diameter of

the cell is about 5.9 cm, its length is 12 cm and the maximum depth of the sand-water mixture is about 1.5 cm. The shaded area

represents the unfluidized section of the sand bed. The slip channel is at depth hs:

A.J. Patitsas / Journal of Fluids and Structures 17 (2003) 287–315 291



1
2
ð%v=sÞ; which is far from constant, as will be seen below. In order to get around this difficulty, the depth h in Fig. 2 is

divided into small intervals Dy so that in one such interval Z is fairly constant. Equation (2) then simplifies to

r
@ua

@t
¼ �

@pa

@y
þ 2Z

@2ua

@y2
: ð3Þ

From ua ¼ @x=@t; where xðy; tÞ is the particle displacement, it follows that x ¼ �ðj=oÞua where harmonic solutions,

having the time dependence ejot; are assumed. From Kinsler et al. (1982), pa ¼ �Bð@x=@yÞ; where B is the bulk modulus

of the fluidized granular bed. From Eq. (3), the wave equation for x is

@2x
@t2

¼ V2
c

@2x
@y2

; Vc ¼ V 1þ j
2Zo

B

� �1=2

; V ¼
B

r

� �1=2

; ð4Þ

where Vc and V are the complex and real phase velocities, respectively. It is shown in Kinsler et al. (1982) that the

pressure pa also satisfies the same wave equation. The general solution to the wave equation for pa is

pa ¼ ðC1e
�jky þ C2e

jkyÞ ejot; ð5Þ

where the complex wavenumber k ¼ o=Vc: With r ¼ m=ðd þ sÞ3; the equation of state (A.16c) becomes

p ¼ q2
m

ðd þ sÞ2
%v2

s
: ð6Þ

Further, B ¼ rð@p=@rÞ and with @p=@r ¼ ð@p=@sÞð@s=@rÞ

B ¼
q2

3
rd2 %v

2

s2
or B ¼

1

3q2

p2

r%v2
; ð7Þ

where q2 is given by Eq. (A.18). With q2 ¼ 1; r ¼ 1700 kg=m3; d ¼ 0:5mm; %v ¼ 10 cm=s and lB ¼ 10; B ¼ 567 N=m2: If
x assumes the simple expression x ¼ xo sinðky0Þejot about the point O0 in Fig. 4, then the ratio of the amplitudes of the

second and third terms in Eq. (3) becomes B=ð2ZoÞ: With Z ¼ 2 kg=ðm sÞ from Eq. (A.21), the third term can be

neglected only for very low frequency emissions. The expression for the real velocity V in terms of p is

V ¼

ffiffiffiffiffiffiffi
1

3q2

s
p

r%v
: ð8Þ

In Kinsler et al. (1982), the relaxation time t is defined as t ¼ 2ðZ=BÞ: It follows from Eqs. (A.16) and (A.21) that

t ¼ 6
q01
q2

s

%v
or t ¼

ffiffiffiffiffiffiffi
1

3q2

s
6q01d

V
: ð9Þ

It will be seen below that for the case of the frog sand, d ¼ 0:5 mm; VE1m=s; q1E0:5; q2E1:0; %v=DuE5; resulting in
tE4:3� 10�3 s and otE19; with fd ¼ 690 Hz: The large value of ot implies that Eqs. (3) and (7) may not be totally

suitable to describe wave propagation in a fluidized granular bed.

It is evident from Eq. (8) that the random velocity %v must be known as a function of y before any modes of vibration

can be specified. After some algebra with two terms canceling out, the following differential equation for %v can be

obtained from Eqs. (A.29) and (A.30)

d

q2
p
d2 %v

dy2
þ

d

q2

dp

dy

d%v

dy
þ

q2

q01

s2

pd
%v � G

p

q2d
%v � 2p

@uy

@y
¼ 0; ð10Þ

where s; p; q01; q2; G are given by Eqs. (A.16)–(A.18) and (A.31) and p ¼ po þ rgy: The above equation is the same as

Eq. (6.37) in Haff (1983) except for the terms involving m; the term d%v=dy; resulting from dp=dya0 and the term

involving uy: Further, Eq. (10) is reducible to

d2 %v

dy2
þ

rg

ðpo þ rgyÞ
d%v

dy
¼ �

1

b2
%v þ 2

q2

d

Duy

d
; ð11Þ

where

1

b2
¼

2

d2
q1
Du

%v
� G

� �
; ð12Þ

and Duy is the difference in uy between adjacent layers. It is assumed that Duy is nearly independent of y: It may be noted
that uy; in the context of the delatancy effect, is independent of the acoustic particle velocity ua: It follows from
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Eq. (A.8) that G is the measure of the inelastic nature of the grain–grain collisions. The parameter b can acquire a wide

range of values, from N when q1ðDu= %vÞ- G-0; down to d ; when the same term approaches 1.

2.2. Forced sand

2.2.1. Unsingable forced sand q1ðDu=%vÞ � Go0

It is assumed that in this case there are no stick–slip effects, implying no compactness and delatancy effects, implying

in turn that Duy ¼ 0: Further, if rg=2po{j1=bj and rg=2po{1; then the solution to Eq. (11) is

%v ¼ C1e
�y=jbj þ C2e

y=jbj: ð13Þ

Since the fluidization energy is supplied by the plate at y ¼ 0; in Fig. 1, it is reasonable to assume that %v is maximum at

y ¼ 0; implying C2 ¼ 0: Clearly, b specifies the extent of the fluidization along y; and in this sense it can be labeled as the
‘fluidization parameter’. Modes of vibration can exist in such a granular bed, but due to the high relaxation time they

can only become excited by a driving force in resonance with them. From Eq. (8), the real velocity V increases

exponentially with y=jbj: Effectively, the granular bed resembles a heavily damped spring whose spring constant

increases exponentially with ½y=jbj
2:

2.2.2. Singable forced sand; q1ðDu=%vÞ � G > 0

It can be concluded from the experimental study by Miwa et al. (1983) that, in this case, there are stick–slip and

consequently compactness and delatancy effects in the granular bed, implying Duya0: The same assumptions, which
result in Eq. (13), result in equations:

%v ¼ %vo cos
y

b

� �
þ D

� �
; ð14aÞ

or

%v ¼ %vo sin
y

b

� �
þ D

� �
; ð14bÞ

where

D ¼ 2q2
b
d

� �2Duy

%vo

: ð15Þ

Clearly, D has to be larger than 1 for %v to remain positive for all y=b: With D ¼ 1; q2 ¼ 1; b=d ¼ 10; it follows that
Duy= %vo ¼ 1=200: This justifies the assumptions that uy{1 and uy{ux in Eq. (A.26). The fluctuation velocity %v has not

been expressed as the superposition of the two solutions presented above, since in a highly viscous fluidized bed %v is

nearly 0 at the floor of the bed. Which one of the two solutions applies depends on the value of b; as will be argued
below. In either case, the fluidization parameter b can be interpreted as the wavelength of the spatial variation of %v with
y=b divided by 2p: It is also the distance between channels divided by 2p and approximately equal to channel width, as

shown below.

It can be verified that the pseudoheat flux density Q; Eq. (A.27), points towards � #y or #y at y ¼ 0; if Eq. (14a) or (14b)
is adopted, respectively. If b is sufficiently large so that the first slip channel lies below the floor of the granular bed, or if

it is sufficiently small so that the slip channels are crowded near the surface, then Eq. (14a) would apply. Effectively,

without the presence of a slip channel in the granular bed there is no means for the dissipation of the energy flux into the

sand mass, resulting in a highly energized boundary layer. Fig. 1(b) in Jaeger and Nagel (1992) and Fig. 3(b) in this

report appear to be good representations of such a case. In the report by Jaeger and Nagel, mustard seeds are induced

to avalanche down an inclined plane, with only three layers on the surface participating in the avalanche. When

Eq. (14b) is applicable, the regions of high velocity %v; i.e., the regions of the slip channels, otherwise known as the

regions of weakness or failure, are at y=b ¼ p=2; 5p=2 etc. It can be verified that the energy flux Q; Eq. (A.28), points
towards these regions from either side, resulting in large energy concentration in these relatively narrow bands.

The first slip channel at hs1 ¼ ðp=2Þb; in Fig. 1, would not be realized since it is too close to the plate where it would

overlap with the boundary layer or with turbulent grain flow, as illustrated in Fig. 3(a). The second and third channels

occur at hs2 ¼ ð5p=2Þb and at hs3 ¼ ð9p=2Þb; respectively. When the pressure po is sufficiently large, the sand mass in the

regions of weakness begins to flow towards the sand surface where the pressure is lower and thus the slip channels are

realized, as illustrated in Fig. 3(a).

It follows from Eqs. (8) and (14b) that

V ¼ VaFa; ð16Þ
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where

Va ¼

ffiffiffiffiffiffiffi
1

3q2

s
po

r %vo

; Fa ¼
1

ðsinðy=bÞ þ DÞ
: ð17Þ

In the slip channel, V is written as

Vs ¼ ld fd ¼ wfd ; w ¼ wf 2b; ð18Þ

where ld is the wavelength of the dominant mode for which the pressure pa peaks at the center of the slip channel. It can

be estimated from Fig. 4 that the effective width w of the channel is about 2b: However, the shape of the velocity well
and the large relaxation time result in a correction factor wf close to 0.5, as will be established below.

2.3. Avalanching sand

2.3.1. Unboomable avalanching sand; q1ðDu=%vÞ � Go0

In the cases of Fig. 2, po assumes the value 0 in Eq. (11). When Eq. (11) is multiplied by y2 and the

substitution z ¼ y=b is effected, the resulting equation is the modified Bessel differential equation of zero

order having the solutions Ioðy=bÞ and Koðy=bÞ: The modified Bessel function of the first kind Ioðy=bÞ assumes the
value 1 at y=b ¼ 0 and rises very sharply with increasing y=b (Abramowitz and Stegun, 1964). More conventional

expressions for %v and V can be obtained from the second solution Koðy=bÞ: The difficulty with Koðy=bÞ becoming N

at y=b ¼ 0 can be bypassed by assuming the existence of a surface boundary layer, so that the limit y=b-0 need

not be considered.

2.3.2. Boomable avalanching sand ; q1ðDu=%vÞ � G > 0

The solutions in this case are

%v ¼ %vo Jo

y

b

� �
þ D

� �
ð19aÞ

or

%v ¼ %vo Yo

y

b

� �
þ D

� �
; ð19bÞ

Fig. 3. X-ray radiographs depicting a rectangular plunger, 3 cm wide by 5 cm deep, impacting on a bed of sonorous and silent sands.

The average width of the slip channels is estimated to be 4.8mm. The slip channels are shown as slip layers in the report by Miwa et al.

(1983). Reproduced by permission of the principal author. (a) Musical sand. (The number of distinct, and periodical occurence, of slip

layers corresponds to the frequency of the sound.) (b) Silent sand has no slip layers.
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where Joðy=bÞ; Yoðy=bÞ are the ordinary Bessel functions of zero order. The second solution is not applicable since

Yoðy=bÞ-�N as y=b-0: From Eqs. (8) and (19a) it follows that

V ¼ VbFb

y

b

� �
; ð20Þ

where

Vb ¼

ffiffiffiffiffiffiffi
1

3q2

s
gb
%vo

; Fb ¼
y=b

Joðy=bÞ þ D
: ð21Þ

Except for a constant factor, V varies with y=b as shown in Fig. 4 by the broken line. The center of the first velocity well
lies just under y=b ¼ 7:0 and the centre of the second just under y=b ¼ 13:3; where the second maximum of Joðy=bÞ
occurs, etc. It follows from the equation pa ¼ �Bð@x=@yÞ that pa; @x=@y and @ua=@y; corresponding to the first overtone,
all peak at the center of the channel at O0: Therefore, the first overtone plays an important role in the capacity of the

layers to slip over each other, facilitating at the same time the energy transfer from gravitational potential energy to

vibrational energy. Effectively, a self-generating resonance process takes place, which can explain the enormous

vibrational energy developed during prolonged slides, despite the high viscosity characterizing the sand bed. In the

neighborhood of the centre of the slip channel, V ¼ Vs where

Vs ¼

ffiffiffiffiffiffiffi
1

3q2

s
7

0:3þ D
gb
%vo

; ð22Þ

where 0.3 is the value of Joðy=bÞ at its first maximum. Vs can also be expressed as in Eq. (18). It has been remarked that

wave Eq. (4) holds only in a small interval Dy=b; where the viscosity Z and the bulk modulus B are approximately

constant. In Fig. 4, such intervals are shown by horizontal bars where the smaller intervals have length 0.5 and the

larger ones are twice as long. For better computational stability, the origin was chosen at O0: The intervals are

enumerated from 0 to 8 going left from O0 and from 0 to 3 going right. The velocity to the left of the third interval was

chosen to be 200 m=s to correspond to the phase velocity in unfluidized sand beds (Winterkorn and Fang 1975). Its

exact value is not critical as long as it is much greater than V ð0Þ at the centre. From Eq. (20), the function V at the

center of the nth interval is

V ðnÞ ¼
0:3þ D

7
Vs

yðnÞ=b
JoðyðnÞ=bÞ þ D

: ð23Þ

Fig. 4. The broken line represents the function V ; Eq. (20), which is a measure of the complex phase velocity Vc; Eq. (24), describing
an avalanching granular bed. The depth of the channel hs corresponds to the point O0: The horizontal bars depict the intervals in which
the linearized wave Eq. (4) can be assumed to hold. Vn is the phase velocity at the center of the nth interval. To the left of O;
V ¼ 333m=s; i.e., the phase velocity in air at standard conditions.
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From Eqs. (4) and (9), the corresponding complex phase velocity is

VcðnÞ ¼ V ðnÞ 17j6q01
1

3q2

� �1=2 od

V ðnÞ

" #1=2
; ð24Þ

where the sign of j has to be adjusted so that there is attenuation, not enhancement, along the wave propagation. In

order to determine the natural frequencies of vibration fi; the standard procedure (Kinsler et al., 1982) was followed in

equating the pressure pa and the particle velocity ua at the end of a given interval to those at the adjacent end of the

adjacent interval. The procedure leads to a system of linear equations, where the coefficients can be determined for

given values of b;D;Vs; q01; q2; r; d and o ¼ 2pf : The frequencies fi were determined by varying f until the determinant

of the coefficients acquired a minimum value. In the determination of paðy=bÞ from the same equations, the pressure

coefficient in air to the left of O; in Fig. 4, was assigned the value 1.

3. Results

3.1. Unforced sands

3.1.1. Frog sand

The shaded area in Fig. 2(b) depicts the unfluidized section of the frog sand bed. According to web site http//

www.bigai.ne.jp/miwa/sand/what/, the sand grains are composed of 99% quartz and the mixture contains 100 cm3 of

water. The cell is constructed from acrylic resin and the ends are sealed with circular acrylic plates 1mm thick. The

similarity of the case of the frog sand to that of the singing sand, as will be seen later, led to the assumption that the

fluidized sand depth hE1 cm and thus from Fig. 4, bE1 mm; where h=bE10 from Eq. (21). The estimated average

grain diameter is close to 0.45mm. According to published reports (Bagnold 1954; Brown et al., 1964; Shen and

Ackermann, 1982), the effect of the water as the interstitial fluid can be neglected. Further, from Eq. (A.21), Z in the slip
channel is of the order of 1 kg/(m s), while that of water is about thousand times smaller.

Fig. 5 depicts a nearly entire event of an acoustic emission recorded in early January, 2000 at the Exploration

Laboratory of the International Nickel Company in Sudbury, Ontario. A piezoelectric film was taped to the cell wall,

with a thin layer of regular honey interposed, and the signal was fed into a Tektronix oscilloscope, model TDS42A.

Fig. 5. Time signal from the frog sand, with the cell held in a horizontal position and moved gently back and forth. A piezoelectric film

was taped on the cell wall and the signal was stored in a digital oscilloscope. The AC 60 cycle component is clearly discernible.
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Fig. 6 depicts a similar signal recorded about 1 month later. Overall, the signals in both cases appear to be the same.

However, the frequency components and their strengths differ, as shown in Figs 8 and 9 and in Table 1. Fig. 7 shows

five such events separated by about 100ms: The tactile sensation of about 10 Hz was clearly felt when the signal was

emitted. The 60 Hz electric power component can be seen in Figs. 5 and 6 and more so in Fig. 7.

The plots in Figs. 8 and 9 are fast Fourier transforms of the time signals in Figs. 5 and 6, respectively, obtained by the

use of the Matlab signal processing toolbox software. The most visible frequencies around the dominant frequency

fd ¼ 690 or 689Hz, are shown in columns 2 and 3 of Table 1. There is no definite pattern in the distribution of these

frequencies labeled by the letters a, b, c... on the left of fd and by a0; b0; c0:.. on the right of fd ; except that the average
spacing Df is about 20Hz. Similar frequency spectra with spacing of about 23Hz were recorded by Qu et al. (1995).

The near equality of the dominant frequencies in Figs. 8 and 9 is considered to be more of a coincidence than the rule.

In both cases, the cell was moved back and forth horizontally rather gently and the signal was recorded soon after the

motion began. In the early stages of testing for signal emission and its frequency analysis, the value of fd ¼ 603 Hz was

determined. A more vigorous movement of the cell could have resulted in a larger depth h and a larger b and thus in a

lower fd ; as seen in Eq. (18) with Vs ¼ 1 m=s: A similar change in fd ; from 66 to 53Hz, is reported in Criswell et al.

(1975), regarding the avalanching booming sand. While in most cases the frequency spacing is close to 20Hz, (Table 1),

there are cases where Df is considerably less or more than 20Hz. Therefore, these frequency spectra are not merely

composed of harmonics of the fundamental equal to 20Hz.

The method of computation of the eigenfrequencies fi and the vibration patterns, Eq. (24), was tested on a simple

velocity profile comprised of two very deep square wells with a rigid wall on the right and air on the left. Such a velocity

profile corresponds, in the low frequency limit, to the familiar two mass–two spring system, where the weightless spring

at right is attached to a rigid wall and the blocks of mass M slide without friction on the floor. The system has two

degrees of freedom and two natural frequencies of vibration. The lower frequency corresponds to the mode where both

blocks move in phase and the higher to the mode where the blocks move out of phase, the ratio of the two frequencies

being 2.618. The positions of the wells correspond to those of the springs. It was determined that the ratio of the two

lower frequencies is also 2.618. Further, the standard test procedure (Barber and Yeh, 1975; Lapalme and Patitsas,

1993; Noel and Patitsas, 1998) of shifting the origin O0 and looking for changes in the frequency spectrum was used in

the simple model and in more complex cases, such as the one shown in Fig. 4.

The required parameters in Eq. (24) are listed in Tables 2 and 3 No frequencies could be found until the phase

velocity at the middle of the last interval to the left of O0; in Fig. 4, was reduced substantially. When the complex phase

velocity Vcð8Þ ¼ ð0:3897j0:388) was reduced to (0:047j0:0), a frequency spectrum was obtained with fundamental

fo ¼ 33:6Hz and overtones beginning with 40.0Hz, having an average spacing DfE20:0 Hz: The irregularity in the

Fig. 6. Same as Fig. 5, but 1 month later.
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frequency spacing can be attributed to the interaction between the modes in the 8th interval and those in the velocity

well at O0: It becomes more pronounced when the relaxation time t is reduced . It may be noted that the spectrum with

fo ¼ 20 Hz and harmonics of fo corresponds to an infinite square velocity well having width L ¼ b ¼ 1 mm and

V ¼ 0:04m=s:More irregularities in the frequency spectrum can be obtained by reducing the velocity Vc(7). The fourth

column in Table 1 is a frequency spectrum computed with Vc(7) reduced from its original value of (0:8087j0:796) to
(0:1007j0:000) and Vc(8) from its original value to (0:0607j0:000). For comparison purposes, the phase velocities for f

= 690Hz at the middle of the intervals 0, 1, 4, to the left of O0; are, respectively, (2:0097j1:840), (2:0247j1:852) and
(4:9917j3:378). It cannot be argued that the values D ¼ 0:5 and wf ¼ 0:5; in Table 3, are unique. However, the

relatively low value of D corresponds to the relatively low level of fluidization due to the gentle movement of the cell.

The value of wf is justified further below. In general, the frequency spectrum depends very critically on Vc(8) and

weakly on D and wf :
The necessity to reduce the value of Vc(8) could be attributed to the presence of a surface boundary layer. Haff (1983)

alluded to such a layer and Thompson (1993), in a computational study, presented a graph showing considerable grain

saultation on the surface when the granular bed was driven by a vibrating plate at the bottom of the bed. The critical

dependence of the frequencies fi on the width and the phase velocity of the boundary layer can account for the lack of

reproducibility of the spectra, as seen in Table 1 and in Criswell et al. (1975). Further, it will be seen below that the

values of %v=Du and b are history-dependent, rendering the exact reproduction of the frequency spectra very unlikely. In

this sense, it could be argued that the lack of acoustic emissions, when slabs of sand in a sand pile break off and slide

downhill, has its origin primarily in the insufficient fluidization of the surface boundary layer. In the case of Fig. 3(a),

the surface boundary layer is clearly ill-defined and so is the frequency spectrum, according to Fig. 11(c) in Miwa et al.

(1983).

Table 1

Frequency spectra for the frog sand

Peak Frequency(Hz) Frequency(Hz) Frequency(Hz)

Fig. 8 Fig. 9 theoretical

y 139

w 191

t 266

s 258

o 390 360

m 422

l 455 496

j 494 513

i 506 536

h 553 552

g 572 560 571

f 577 593

e 607 598 608

d 628 630

c 641 650 649

b 660 670 665

a 690 689 688

b0 708 709 705

c0 737 721 723

d 0 779 744 745

e0 762 761

f 0 811 779 781

g0 833 798 802

i0 850 817

n0 1019 839

t0 1187 858

The first column lists the labels of the peaks shown in Figs. 8 and 9 and the second and third columns list the corresponding

frequencies. The fourth column lists the theoretically predicted frequencies. Not all peaks in Figs. 8 and 9 are included.
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Fig. 10 shows a plot of the real part of the acoustic pressure amplitude pa versus y=b with wf = 0.5 and fd ¼ 690 Hz:
The peak occurs at the middle of the first interval to the left of O0; i.e., at y=b ¼ 6:75: It follows that while the frequency
spectrum is principally determined by the properties of the boundary layer, due mainly to the large value of the

relaxation time t in the rest of the grain bed, the energy transfer to the modes of vibration occurs in the slip channel.

While the plot remains nearly the same for changes in D from 0.5 to 1.0, for example, the value wf ¼ 1 results in a peak

Fig. 8. The frequency spectrum corresponding to the time signal in Fig. 5. The frequencies, enumerated by the Latin letters, are shown

in Table 1.

Fig. 7. Same as Fig. 5 but on a longer time scale.
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at y=b ¼ 6:5; which lies near the edge of the slip channel. The value wf ¼ 0:5 for the sonorous sand can be deduced

fairly accurately from Fig. 3(a), as outlined in Section 3.2. The plots for the adjacent frequencies fb ¼ 670 Hz and

fb0 ¼ 709 Hz are nearly the same as in Fig. 10, but as fi becomes more distant from fd ; the peak moves further away from
the center of the channel. There is no apparent reason why the modes corresponding to two adjacent frequencies are not

equally excited. The plot with f ¼ 343 Hz peaks asymmetrically at y=b ¼ 6:5 and then decreases monotonically for

larger y=b; while the plot for f ¼ 41:3Hz has one oscillation between y=b ¼ 0 and 2.0 and then it increases

monotonically for larger y=b: When the relaxation time t is reduced by a factor of 100, the plot for fi ¼ fd ¼ 690 Hz

assumes the form of a cosine function, with wavelength equal to b; centered at O0:

3.1.2. Avalanching booming sand

In the case of the avalanching booming sand, the only known quantitative study is that by Criswell et al. (1975). The

recorded time signals have the overall appearance of those in Figs. 5 and 6. The dominant frequency in Fig. 4(d) in

Criswell et al. (1975) is 66Hz surrounded by 58, 61, 68, 72, 76Hz and appreciable ‘overtones’ at about 120Hz, the

Table 2

Experimental data on the phenomena of the booming–singing sands

Sand type b d b=d 1=b fd Vs c
(mm) (mm) (1/m) (Hz) (m/s) (deg)

Booming sand

(avalanching) 13.0 0.34 38.2 77 66 1.03 32

Booming sand

(in glass jar) 4.3 0.34 12.6 232 200 1.03

Frog sand 1.0 0.45 2.2 1000 690 0.69

Sonorous sand 4.8 0.50 9.5 208 210 1.00 35

Singing sand 1.0 0.45 2.2 1000 850 0.85 35

b is the fluidization parameterEh=10; where h is the depth of the fluidized sand bed. b is nearly equal to the slip channel width w: b=d is

nearly equal to the number of layers in the slip channel. fd is the dominant frequency of the acoustic emission. Vs ¼ 2bfd wf is a measure

of the real part of the phase velocity in the slip channel. wf is a correction factor listed in Table 3. c is the angle of dynamic sliding =

tan�1ðs=pÞ:

Fig. 9. Same as Fig. 8, but for Fig. 6.
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average spacing being 3.6Hz. As in the previous case, it was necessary to reduce the values of Vc(7) and Vc(8) to

(0:9007j0:400) and (0:097j0:000) respectively in order to obtain the following spectrum: 61, 63, 66, 69, 72 and 75Hz,

with D ¼ 0:8 and wf ¼ 0:6: In the case of avalanching snow, the regions of weakness begin as regions of crystallization,
which become regions of fluidization when avalanching begins. The assumed absence of acoustic emissions could be

attributed to the lack of an appropriate surface boundary layer.

3.2. Analysis of experimental results

Table 2 presents the available experimental data on the five cases where the value of b can be estimated with a

sufficient degree of confidence. The value of the angle of sliding, c; Fig. 2(a) and Eq. (A.19), was reported reliably only
in the case of the avalanching sand (Lindsay et al., 1976), while from Miwa et al. (1983) it can be inferred that it is close

Fig. 10. Plot of the real part of the relative pressure amplitude pa versus y=b; Fig. 4, for the case of the frog sand. The relevant

parameters are: fd ¼ 690Hz; D ¼ 0:5 and wf ¼ 0:5:

Table 3

Computed parameters for the five cases listed in Table 2

Sand type q2 D wf %vo (cm/s) lB %v=Du m e Du (cm/s)

Booming sand

(avalanching) 0.79 0.8 0.6 49.0 5.2 19.5 0.600 0.875 2.0

Booming sand

(In glass jar) 0.83 0.8 0.6 19.1 13.0 12.7 0.550 0.850 1.2

Frog sand 0.87 0.5 0.5 8.3 13.3 5.2 0.67 0.900 1.0

Sonorous sand 0.77 0.5 0.5 27.4 5.8 16.2 0.670 0.800 1.3

Singing sand 0.87 0.5 0.5 6.7 15.5 5.2 0.670 0.900 1.0

q2 is the factor in the equation of state (A.16). D is the measure of the work done by the slip channel on the overburden during

delatancy, Eq. (15). %vo is the fluctuation velocity given by Eq. (22), which is higher by 20% than the fluctuation velocity at the center of

the slip channel for the case of Eq. (19a). lB is the Bagnold linear concentration parameter and %v=Du is the velocity ratio characteristic

of the state of the grain bed. m and e are the coefficients of friction and restitution, respectively, and Du is equal to the entry in column

5, reduced by 20%, then divided by the entry in column 7. Its value of 2 cm=s; in the case of the booming avalanching sand, could be

closer to 1 cm/s, as outlined in Section 3.2.
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to 351 for the sonorous and the singing sands. Since the parameters e; m; Du=%v are not known, the value of b was

obtained from the estimated value of the fluidized granular bed, h; instead of Eq. (12). For only one slip channel,

hEð7p=2Þb in the case of the singing sand, Eq. (17), and hE10b in the cases of the avalanching and frog sands, Eq. (21).
In the case of the avalanching booming sand at the Sand Mountain in Nevada, USA, the value of h was reported to be

around 13 cm (Criswell et al., 1975; Lindsay et al., 1976). In the case of the same booming sand in a glass coffee jar, 8 cm

in diameter by 16 cm in height, it was determined that the sound emission ceased when the sand depth was reduced to

between 4 and 4.5 cm, implying a value of b close to 4.3mm. In the case of the singing sand, the estimation of h was

more difficult. When singing sand from the east shore of Lake Michigan, USA, was in good singing condition, it

maintained its singability when sheared gently to a depth of about 1 cm, as shown in Fig. 1. Further, the data shown in

Figs. 2 and 4 in Nishiyama and Mori (1982) were obtained for a sand depth of about 1 cm. A reasonable value of the

error in the listed values of b could be as high as 20%. The values of the average grain diameter d and the dominant

frequency fd were obtained from Criswell et al. (1975), Miwa et al. (1983), Leach and Rubin (1990), Leach and

Chartrand (1994), Qu et al. (1995) and Section 3.1.

The striking features in Table 2 are that the values of 1=b are close to the values of fd and that the value of the phase

velocity Vs is close to 1m/s, over a wide range of values of b and fd : The width factor wf for the booming sand in the

glass jar was assigned the value 0.6, as for the avalanching booming sand, and that for the other sands was assigned the

value 0.5, as for the frog sand. These values are listed in Table 3. Evidently, more experimental data on the depth and

width of slip channels are needed. It follows from Eqs. (12) and (18) that fd varies inversely with d; while according to
Bagnold (1966) it varies inversely with

ffiffiffi
d

p
: The experimental report by Leach and Rubin (1990) suggests a variation

like d�g; with g closer to 1 than 0.5.

From Eqs. (A.16c) and (17), the Bagnold linear concentration parameter lB ¼ d=s at the center of the slip channel

can be written as

lB ¼
3

q2

� �1=2

ð1þ DÞ
Vs

%vo

or lB ¼ 3rð1þ DÞ2
V2

s

po

: ð25Þ

Similarly, from Eqs. (A.16c) and (22), in the case of the avalanching booming sand

lB ¼ 3rð0:3þ DÞ2
V2

s

p
; p ¼ 7brg: ð26Þ

With g ¼ 9:8 cosð303Þ; D ¼ 0:8 and wf ¼ 0:6; lB ¼ 5:2; in the case of the avalanching booming sand, while lB ¼ 13:0; in
the case of the booming sand in the glass jar. In the case of the frog sand, lB ¼ 13:3: A more explicit expression for lB

can be obtained by using Eq. (12) in Eq. (26), i.e.,

lB ¼
3

7
ð0:3þ DÞ2V2

s

ffiffiffi
2

p ðq1ðDu=%vÞ � GÞ1=2

gd
: ð27Þ

In Fig. 3(a), the slip channels are not formed under the plunger. Therefore, sufficiently away from the plunger, Eq. (26)

is more likely to apply than Eq. (25). Effectively, the diagram in Fig. 1 serves mathematical simplicity rather than

reality. The distance between the channels, Ds; in Fig. 3(a) is estimated to be 30mm, the width of the plunger having

been reported to be 30mm, in a private communication with Shigeo Miwa. With Ds=b ¼ 2p; it follows that b ¼ 4:8mm:
Further, the ratio Ds=w is estimated to be 6, on average, resulting in channel width w ¼ 5 mm and wf E0:5: In the case

of the sonorous sand with D ¼ 0:5; lB ¼ 5:8; while in the case of the singing sand lB ¼ 15:5: Slightly larger values of D
result in unacceptably large values of lB; i.e., lBc17: This puts in question the validity of the equations of fluid

mechanics in the present context and the assumptions leading to Eq. (26), regarding the existence of modes of vibration

in the sand beds. However, the relatively narrow range of the allowed values of D could reflect the rarity of these

phenomena. For example, relatively large values of D tend to reduce the depth of the velocity well in Fig. 4, and

consequently to reduce the intensity of the acoustic emissions.

The angle yo appearing in the integrals defining the constants Iij in Eq. (A.14) increases with grain separation. If yo is

301 when s=d = 0 and 601 when s=d ¼ 1
2
; the following simple relation can be used

yo ¼ 30þ 60
1

lB

: ð28Þ

However, the precise value of yo is not critical in the relevant computations. Fig. 11 shows plots of b=d and of lB versus

%v=Du based on Eqs. (12) and (27), respectively with m ¼ 0:500; e ¼ 0:850; D ¼ 0:6 and Vs ¼ 1: At %v=DuE11:2; ðb=dÞ2

changes sign and thus for %v=Du > 11:2; b=d is equal to the value shown in Fig. 11, multiplied by j ¼
ffiffiffiffiffiffiffi
�1

p
: The value of

%v=Du ¼ %v=Dujo; at which the change of sign occurs, decreases strongly with decreasing m and especially so with

decreasing e: The plot of lB for %v=Du > 11:2 is questionable since there is no slip channel for these values of the velocity
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ratio. However, even in an unsingable grain bed it could be argued that larger b; i.e., larger fluidization, implies smaller
lB: Further, in the neighborhood of %v=Dujo; where lB is smaller than about 5, the plot for lB cannot be expected to

apply since Eqs. (A.16a)–(A.16c) cannot be expected to apply to a relatively loosely compacted granular bed.

Fig. 12 shows plots of e versus m obtained from Eq. (12) with d=b ¼ 0 for various values of %v=Dujo: The value of yo

was computed with lB ¼ 10: The plot with %v=Dujo ¼ 20 lies just below that with %v=Dujo ¼ 30 and those with %v=Dujo > 30

practically coincide with it. The plots with lB ¼ 5 lie slightly above those with lB ¼ 10: It follows that for given m and e;
the granular bed is unsingable if %v=Du > %v=Dujo: It will be argued in Section 3.3 that the ratio %v=Du can be altered by

modifying the confinement of the granular bed.

From reports in Lewis (1936), Lindsay et al. (1976) and Haff (1986), it is estimated that in the case of the avalanching

booming sand, the overburden avalanches with a velocity close to 20 cm/s. With the effective channel width w

approximately equal to b and with d ¼ 0:34 mm; it follows that there are 44 sliding layers in the channel, resulting in an
average Du ¼ 0:45 cm=s: However, from Fig. 14(b), Du could be several times larger than this value during the acoustic

emission. It will be argued in Section 3.4 that the acoustic emission takes place during the latter phase of the delatancy

stage, corresponding to the latter part of the interval CD in Fig. 14(b). The use of the parameters, shown in Table 3, in

Eq. (22) results in %vo ¼ 49:0 cm=s and in %v ¼ 39 cm=s at the center of the slip channel, according to Eq. (19). In the

absence of any other information on Du; the value of 2 cm/s was assumed, resulting in %v=Du ¼ 19:5: Using the values of
lB and c given in Tables 2 and 3, m was determined from Eq. (A.19). Then e was varied in Eq. (12) until the value of

b=d ¼ 38:2 was obtained. The procedure resulted in the unique values m ¼ 0:600 and e ¼ 0:875:
It can be seen in Fig. 12 that the doubling of the value of %v=Du results in a minute increase in the value of e; implying

that knowledge of the precise value of Du is not essential. For example, the values m ¼ 0:62 and Du ¼ 1:5 cm=s result in
e ¼ 0:900: In general, the value of m is 5–10% lower than tanc: The relatively large value of b=d implies that %v=Du is just

under %v=Dujo: Therefore, a slight increase in the air humidity can result in a thicker water coating on the grains and thus
in lower values of m and e; rendering the sand unboomable. This could be one reason why the booming sand phenomena
are more rare than the singing sand phenomena where b=d is relatively small. Further, according to Section 3.4, the

excess moisture on the grain surface could alter the surface texture, rendering the granular bed unboomable by reducing

the level of excitation of the elastic modes in the grains.

In the case of an unsingable granular bed with %v=Duc%v=Dujo; b=d approaches G�1; implying a small b unless G-0:
Further, as %v=Du-N; Du-0 in a non hyper-fluidized granular bed, resulting in Z-N from Eq. (A.21). It follows that

such a state could describe a highly compacted sand bed. Similarly, with %v=Du-%v=Dujo from either side in Fig. 11, b
becomes very large, and with %v=Du-1; Du becomes very large in a hyper-fluidized sand bed, implying a small viscosity

Z: Such a state could describe a bed of dry quicksand.

Fig. 11. Plots of b=d; Eq. (12), solid line and of lB ¼ d=s; Eq. (27), broken line, versus the velocity ratio %v=Du for: m ¼ 0:5; e ¼ 0:85;
D ¼ 0:6 and Vs ¼ 1 m=s: For %v=Du > %v=Dujo ¼ 11:2; where b=d-N; the value of b=d shown has to be multiplied by

ffiffiffiffiffiffiffi
�1

p
: Further, the

part of the plot with lBo5; about, is not applicable since Eqs. (A.16a)–(A.16c) are not applicable when s-d:
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In order to obtain a measure of the value of the coefficient of restitution of the singing sand, approximately 2000

grains of singing sand from Lake Michigan, of booming and silent sands and glass beads of comparable size were

dropped and tumbled in a stainless-steel cooking pot 25 cm in diameter by 10 cm in depth. It was observed that the

grains from the booming and silent sands rebounded somewhat less than those from the singing sand and the glass

beads. Since e for glass is known to be in the neighborhood of 0.9 (Goldsmith, 1952), the same value is shown in Table 3

for the singing sand.

In the case of the booming sand in a glass jar, %v=Du and c are not known. Thus, the unique determination of m and e

is not possible. However, the relatively more humid conditions in Sudbury compared to those at the Sand Mountain

could result in somewhat lower values for these parameters. The values shown in Table 3 with %v=Du ¼ 12:7 result in

b=d ¼ 12:6; shown in Table 2, but the values 0.500 and 0.875 could also be used. In the case of the sonorous sand, m was
chosen to be 0.67 in order for c to be near 351: Then, the values of e and %v=Du; shown in Table 3, result fairly uniquely
in the value of b=d shown in Table 2. In the case of the singing sand, the values m ¼ 0:670; e ¼ 0:900 and b=d ¼ 2:2
result in %v=Du ¼ 5:2: In the case of the frog sand, there is not sufficient information to determine the values of q2; m and

e: However, its similarity to the singing sand, in geometry and acoustic emission, suggests that these parameters ought

to have values close to those of the singing sand. From Fig. 7, the duration of an entire acoustic emission is somewhat

longer than 0.5 s. With Du ¼ 1 cm=s and two layers in the slip channel, the displacement of the overburden amounts to

about 1 cm. Such a displacement does not contradict the visual perception of the sand movement when the acoustic

emission takes place.

From reports in Miwa et al. (1983) and the tumbling of common sand grains in the cooking pot, it follows that the

values of m and e are not appreciably different from those of the singing sand, which has %v=Du ¼ 5:2 and %v=DujoE170: It
follows that common or ordinary sand beds are potentially singable, but silent because they are characterized by

relatively very low ratios %v=Du; to the point where b and w are smaller than d:
The values of Du in Table 3 lie well below the value of

ffiffiffiffiffiffi
gd

p
¼ 7 cm=s with d ¼ 0:5 mm: Above this value, the

granular bed could be described by ideas drawn from the kinetic theory of gases, according to Thompson (1993). In the

context of the kinetic theory of gases, Z is proportional to Du for fixed lB; while from Eq. (A.21) it is nearly proportional

to 1=Du for fixed pressure p: Therefore, for some value Duc between 2 and 7 cm/s, Z could acquire a minimum value.

In the case of the avalanching booming sand with %vo ¼ 49:0 cm=s; Du ¼ 2 cm=s; d ¼ 0:34mm and lB ¼ 5:2; it takes
17ms for one grain to overtake another and there are about 64 collisions between the two grains in the process. With a

signal time of about 600ms (Criswell et al., 1975), there are 35 overtakings during one acoustic event. In the case of the

Fig. 12. Plots of e versus m; based on Eq. (12) with d=b ¼ 0; for various values of %v=Dujo: The plots with %v=Dujo > 30 practically

coincide with the plot for %v=Dujo ¼ 30: The rise of this plot above 1.0, for low values of m; can be attributed to the inadequacy of

Eq. (A.8) regarding the interruption of the sliding during collision.
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frog sand with Du ¼ 1:0 cm=s and d ¼ 0:45 mm; the overtake time is 20ms. From Figs. 5 and 6, the signal time is about

80ms, resulting in only two overtakings during one event.

Eq. (27) was derived for a fluidized granular system inside a slip channel. However, apart from the stick–slip

dissipation parameter D; the other parameters, namely m; e; %v=Du and Vs can also characterize any fluidized granular

bed, which is not necessarily singable. Therefore, it is cautiously proposed that Eq. (27) be used in all such cases with

DE0: In the experimental report by Savage (1978), glass beads 1.8mm in diameter were sheared in an annular cell

having width h ¼ 3:8 cm and mean radius %r ¼ 12:7 cm: The upper and lower walls were lined with coarse sand paper

and the side wall was smooth. With lB ¼ 9:5 and mean shear rate o%r=h ¼ 50 s�1; o being the angular velocity of the

disk, the ratio of the shear stress to the normal stress is estimated to be about 0.45, from Fig. 12 in Savage (1978). This

implies mE0:4; which lies in the range of m for glass on glass (Shand, 1958). The mean velocity U of the rotating disk is

o%r ¼ 1:9 m=s and with 21 layers in the glass bed, Du ¼ 9 cm=s; assuming a constant relative velocity gradient

throughout. However, Du could be much smaller if a boundary layer were assumed to exist on the surface of the disk. If

%v ¼ U ; then %v=Du is greater than 21. In Fig. 12, the point with m ¼ 0:4 and e ¼ 0:9 lies on the curve with %v=Dujo ¼ 10;
implying that the granular bed is not singable. With r ¼ 1700 kg=m3; D ¼ 0; Vs ¼ 1 m=s and po ¼ 1000 N=m2; lB ¼ 5:1;
from Eq. (25). However, lB is close to 9.5 with D ¼ 0:4:

3.3. Squeezed grains

In the experimental study by Nishiyama and Mori (1982), several plots of fd versus mr; the reduced mass of the rod

and the mortar, are included, for various singing sands and also for glass beads 0.6mm in diameter placed in a mortar

with about 1 cm bed thickness. In Fig. 4 in that report, the dominant frequency of the acoustic emission, fd ; decreases
nearly as the inverse of

ffiffiffiffiffi
mr

p
: The authors interpreted this functional dependence of fd on mr as the result of the sand

mass (under the rod) acting as a short spring, or an elastic bar, between the rod and the mortar. The system can be

simulated by an elastic bar, characterized by mass Mb; length L and phase velocity Vs; attached to a rigid wall at one

end and to a rigid block of mass M at the other end. It follows that Vs exceeds the values listed in Table 2 by a factor of

more than 10, when the fundamental mode is considered with L ¼ 5 mm and fd ¼ 2000 Hz: In the context of this study,
the decrease of fd with the mass of the plunger can be attributed to the increase of b and l with increasing p; according
to Eq. (26).

In order to establish that the sand directly under the rod could not be responsible for the sound emission, singing

sand, about 1 cm deep, was placed in a plastic cylindrical pill-cell having inner diameter and height equal to 2 and 5 cm,

respectively. The sand was then impacted by a cylindrical rod, which could barely slide inside the pill-cell. The sand

reacted like a solid mass without any musical acoustic emission. However, when it was impacted by a brass pestle, 8 cm

long and tapered to a maximum diameter of 1.1 cm at the larger end, the acoustic emission with fd close to 1000Hz was

readily produced. This simple experiment clearly demonstrates that the motive force towards the fluidization of the sand

bed is the relative flow velocity Du; and that the musical acoustic emission requires grain flow. Upon impaction, the

sand in the mortar becomes fluidized and a region of failure is established around the rod. When the rod is close to the

floor of the mortar, the pressure po; in Fig. 1, becomes sufficiently large to push the sand in the region of failure, and

that above it, towards the region of lower pressure.

In order to eliminate, as much as possible, the excitation of modes of vibration associated with the mortar, about

250ml of singing sand from Lake Michigan was placed on a cotton cloth at the bottom of a plastic bowl of diameter

equal to 18 cm. The pile was flattened out to a bed depth of about 2 cm. After impacting the bed lightly at the same

point several times with a plunger 2 cm in diameter, a depression was formed with depth at the center close to 0.7 cm

and diameter at the rim close to 5 cm. A better acoustic emission was obtained when the plunger, held at about 301 from

the vertical, impacted the sand about 1 cm from and directed towards the centre. Although the sound was invariably

heard, the quality of the signal on the oscilloscope screen depended significantly on the speed of impaction and the type

of plunger.

Fig. 13(a) shows one of the better signals when the plunger was a relatively smooth rock 5 cm long and 3 cm at its

widest diameter. The impacting end had a radius of curvature of about 1 cm. There are close to 13 oscillations in the

10ms time span, resulting in fd ¼ 1300Hz. With Vs ¼ 1 m=s; it follows that b ¼ Vs=fd ¼ 0:77 mm and hs ¼ 7b ¼
5:4 mm; i.e., the slip channel lies about 5.5mm below the sloping surface of the depression. Only one acoustic event was

observed during one impaction, lasting about 50ms. When the cylindrical rod impacted the sand near the center of the

depression, an appreciable sand mass near the top of the depression could be seen to collapse downwards, and more

sand collapsed downwards to fill the space occupied by the rod when it was removed. Yet, after several such impactions

the geometry of the depression remained nearly the same, implying that the sand mass was displaced upwards by some

mechanism.
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Fig. 13(b) shows a similar recording using an otherwise silent beach sand from the village of Providence Bay on the

south shore of Manitoulin Island, west of Sudbury, Ontario. There are 14 oscillations, resulting in fd ¼ 1400 Hz: The
plunger was the small brass pestle and the grain size was close to 0.4mm. In order to establish that the sound emission

was not due to air mass oscillations, as when two rock surfaces are rubbed together, or due to surface wave excitations,

the sand pile was placed on a cotton cloth, which was placed on a soft foam pad 2.5 cm thick. For the two cases

discussed above, it was not possible to produce a clear signal on the oscilloscope. However, with sand from a beach

south of the village of Agios Petros near the village of Vasiliki, Lefkada, Greece, the signal shown in Fig. 13(c) was

obtained using the rock plunger. This sand is fairly coarse, about 0.6mm in diameter and exhibits relatively little

resistance to the impacting plunger, similarly to glass beads (Brown et al., 1964). It is acoustically relatively weak when

shaken in a glass jar. A similar signal could be obtained using common table salt. Similar signals could be obtained

using piles, in the plastic bowl or on a sheet of plywood 1.5 cm thick, composed of grains of booming sand, a fine silent

sand used for anti-skid purposes, table salt and common white sugar. Better signals could be heard by placing the piles

on a glass pane 45� 50 cm in size and 7mm thick. Similar acoustic emissions could be heard when the above-mentioned

grains were placed in the plastic pill-cell to a depth of about 2 cm and impacted by the small brass pestle.

The pan-fried singing sand, prepared by Haff (1986), exhibited the sonorous property when lightly sheared by a

spoon, and the nearly silent sand, heated in an oven to about 2001C by Lewis (1936), roared even when picked up in the

hands. A few years ago, the singing sand from Lake Michigan sang readily when sheared gently in a dish, regardless of

sand depth. Presently, it sings weakly only when forced to flow between the impacting plunger and a rather hard

surface, and the common antiskid sand requires a relatively high plunger velocity to become sonorous. In the case of the

squeaky sand, a nearly silent singing sand, it was reported by Miwa et al. (1983) that the weak acoustic emission

occurred when a relatively large load was placed on the plunger. Evidently, when the grain bed is highly singable the

velocity ratio %v=Du acquires the value of about 5 with only a slight applied shear stress. It will be argued below that the

weak singability of a grain bed is most likely due to a very low value of the velocity ratio, which could be increased by

the application of a larger shear stress on the grains, in a more confined geometry.

In the experimental study by Brown et al. (1964), glass beads with d ¼ 0:18mm were struck by a cylindrical pestle of

4.3 cm diameter in a dish of 5.0 cm inner diameter. An acoustic emission, described as a shrill, was recorded having a

broad-frequency spectrum with a peak at about 3000Hz. Apart from excitations of the modes of vibration in the dish,

the sound emission could be attributed to a slip channel in the gap between the two cylindrical boundaries. From the

relation h=b ¼ 7p=2; it follows that b ¼ 0:32mm, assuming that the sand depth is equal to the gap between the two

Fig. 13. (a) Time signal after several light impactions at the same point on an approximately 2 cm deep by 20 cm in diameter pile of

nearly silent sand from Lake Michigan placed on a hard surface. The final depression had depth of about 0.7 cm at the center and

diameter of about 5 cm at the top. (b) Same as part (a) with an otherwise silent beach sand, dE0:4mm: (c) Same as part (a) with a

coarser, nearly silent sand placed on a 2.5 cm thick foam pad.
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cylindrical boundaries. Further, with wf ¼ 0:5; Vs is equal to 0:96m=s; which compares well with the entries in Table 2.
The number of slip layers is close to b=dE2:
Takahara (1973) placed grains of singing sand from Kotobikihama in Kyoto prefecture, Japan and rounded glass

particles (40 mesh) in a (steel) cylinder of inside diameter and depth equal to 3.5 and 55 cm, respectively, and drove a

cylindrical (steel) rod of diameter equal to 2.5 cm into the sand column with a relatively large load of 28.12 kg. The

frequencies fd for the two cases are estimated to be 330 and 220Hz respectively. With h ¼ 0:5 cm, b ¼ 0:45 mm;
resulting in Vs ¼ 0:15 and 0.09m/s for the singing sand and the glass grains respectively. The grain diameter in both

cases is close to 0.4mm, implying only one slip layer. It may be concluded that when the grain bed is hyper-fluidized, Vs

can acquire values appreciably below 1m/s.

Brown et al. (1964) reported that when glass beads of diameter 0.18mm were placed in a dish and struck with a pestle,

no resistance to the movement of the pestle through the grains could be felt and no note was produced. It was

established by this author and also reported by Sholtz et al. (1997) that booming sands also remain silent when placed in

a relatively large deep dish and sheared on the surface, and that singing sands remain silent when induced to avalanche

on an inclined plane. However, in the case of the booming sand from the Sand Mountain, considerable resistance to the

movement of the pestle can be felt. In the case of the glass beads, where m is relatively low and e is relatively high, %v=Dujo
is considerably larger than 30, according to Fig. 12. Therefore, the grain bed is silent because %v=Du is relatively very low,

resulting in a highly energized surface boundary layer, as in Fig. 3(b). If %v=Du > %v=Dujo; then in the process of decreasing
the bed depth to about 1 cm, there would be a transition from unsingability to singability accompanied by a very low

frequency emission. The absence of such a transition implies that all such grain beds are potentially singable.

While table salt flows similarly to a regular liquid, the fine antiskid sand flows similarly to the avalanching booming

sands (Lewis, 1936; Criswell et al., 1975; Lindsay et al., 1976; Nori et al., 1997). That is, when about 500ml of sand is

placed in a dish and tilted sufficiently, plate-like slabs ranging in thickness from about 5–10mm break off and slide

downwards. In the former case, it could be argued that the granular bed is intrinsically unboomable, while in the latter

case, it could be argued that %v=Du is relatively small, resulting in relatively small channel depth hs: The lack of acoustic

emission could be attributed to the instability and non-uniformity of the slip channel, but more likely to the lack of a

sufficiently fluidized surface boundary layer. It has been observed that the singability of the singing and booming sands

is considerably reduced when they are shaken in a plastic rather than in a glass jar. It may be concluded that the rigidity

and the surface texture of the wall of the plastic jar result in a lower value of the velocity ratio %v=Du compared to that in

the glass jar.

3.4. Stick-slip effects

Fig. 7 shows five acoustic events from the frog sand in the interval of nearly 500ms, each event lasting about 80ms. In

Fig. 1(b) in Nishiyama and Mori (1982), interruption occurs about every 4 cycles in a signal with fdE1200 Hz: From
Figs. 6 and 7 in Criswell et al. (1975), it follows that the time between two events is about 750ms and that the duration

of an event is close to 600ms. The low frequency of interruption, about 1Hz, of the sound emitted during booming

events was reported by (Humphries, 1966) and accounts for the name ‘booming’ (Sholtz et al., 1997). Although the time

interval between events is fairly constant in Fig. 7, in the report by Takahara (1973) it varies from 50 to 150ms.

Therefore, modes of vibration traveling along the slip channel could not be the cause of the interruption of the acoustic

emission. The most probable cause appears to be the stick–slip effect known to occur in granular media at relatively low

flow velocity rates, Du (Thompson and Grest, 1992; Thompson, 1993). Thompson and Grest argued that stick-slip

effects are associated with compactness and delatancy transitions. Jaeger and Nagel (1992) discussed the relation of the

stick–slip effect to the hysteresis effect in the relation of Du to the angle of repose in a pile of granular material.

In the context of the subject of the singing sands, the stick-slip effect is seen in Fig. 9 in Miwa et al. (1983), where the

depth of penetration of the plunger into the sand is plotted versus the force experienced by the plunger. Fig. 14(a) is a

sketch of this figure with the axes interchanged in order to correspond to Fig. 7 in Thompson and Grest (1992). The

broken line corresponds to the case of the silent sand and the solid line to the case of the sonorous sand. In the plot by

Miwa et al. (1983), the points C and C0 are roughly half as far from the broken line for the case of the squeaky sand, a

nearly silent sand. It follows that the extent of the stick–slip effect determines, in part, the extent of the intensity and the

duration of the acoustic emission.

Fig. 14(b) depicts a hypothetical hysteresis loop, which was drawn to account for the stick-slip plot depicted in

Fig. 14(a). The point C corresponds to the onset of the slip channels and of the surface boundary layer, facilitating the

flow of the sand. It accounts for the collapse of the resistance of the sand to the plunger, depicted by the intervals CD

and DA0: The slope %v=Du ¼ 5 of the interval CD corresponds to the case of the singing sand. It is estimated that the

acoustic emission takes place during the latter part of the interval CD; where lB is relatively small. At point C; D tends

to be large since lB is relatively large, Eq. (27). In turn, a large D tends to reduce the depth of the velocity well in Fig. 4,
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and thus to reduce the intensity of the acoustic emission. In Miwa et al. (1983), it is stated that, ‘the squeaky sand

produced the sound with relatively high frequency only at the last short period of penetration when the velocity was

high and the larger force worked on the sand. The musical sand emitted the audible sound with high sound pressure and

relatively low frequency which lasted for a long time’. Point D marks the end of the stage of delatancy and the beginning

of the stage of compactness. Point A marks the beginning of the stick stage. The slope of the segment AB; corresponding
to a silent sand, was chosen to be 1 in view of the preceding discussion and the lack of any specific information

indicating otherwise.

The origin of the hysteresis loop in Fig. 14(b) could lie with the rates of excitation and dissipation of certain elastic

modes of vibration in the grains. From Patitsas and Patitsas (1990), Noel and Patitsas (1998), it can be inferred that the

circumferential modes of vibration in a thin layer on the surface of the grains are less sensitive to the lack of sphericity

of the grains than the thickness modes, where the particle displacement is radial. In the same sense, the torsional modes

in the grains are less sensitive to sphericity than the radial modes. It is reasonable to assume that the rate of excitation of

these more stable modes depends strongly on the shape and surface texture of the grains and on the degree of

confinement of the granular bed. The degree of confinement defines the strength of the shear stress experienced by the

grains during the compactness stage, corresponding to the interval AB in Fig. 14(b). Qu et al. (1995) reported that

honeycomb-like pits on the surface of quartz grains may play a significant role towards their musical property, while

Leach et al. (1995) reported that as the water dries, after milling, the grains become coated with an extremely thin silica

layer. In the interval BC and the early part of the interval CD; the energy stored in these modes is converted into

fluidization energy. If these modes fail to be excited in the interval AB; the segment BC would fall back on the segment

AB; resulting in no hysteresis loop and no sound emission.

From the simple exercise of representing a grain by an elastic circular rod with length equal to its diameter, it follows

that when the energy of the fundamental mode is equal to ð1=2Þm%v2; the amplitude of oscillation at the end of the rod is

equal to 3� 10�9 m: However, this is only an estimate based on the theory for a thin rod (Kinsler et al., 1993). From

Eq. (A.7), with r ¼ 2650 kg=m3; Young’s modulus E ¼ 7:9� 1010 N=m2; Poisson ratio n ¼ 0:33; R ¼ 0:15 mm and v1z ¼
%v ¼ 10 cm=s; it follows that the maximum surface displacement at the point of contact during collision is a ¼ 5� 10�8 m:
Thus, the energy of the elastic modes in the grains could exceed substantially the grain fluidization energy ð1=2Þm%v2:

3.5. Moonquakes and Mars erosion

Criswell et al. (1975) advanced the idea that the thermal moonquakes, which coincide with the beginning of the lunar

day, are due to avalanche events on the moon’s craters. However, they also argued that the gravitational potential

Fig. 14. (a) Rough sketch of the force experienced by the plunger versus penetration depth in a bed of sonorous sand for an

experimental arrangement similar to that shown in Fig. 3, based on Fig. 9 in Miwa et al. (1983). The broken line corresponds to a silent

sand. (b) A hypothetical hysteresis loop of %v versus Du; corresponding to the plot in part (a). The lengths of the various intervals are not
necessarily analogous to the lengths of the corresponding time intervals. The slopes %v=Du ¼ 5 and 1 correspond to the singing and silent

sands, respectively. The intervals AB and CD correspond to the stages of compactness and delatancy, respectively. The acoustic

emission occurs during the latter part of the interval CD:
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energy of the granular beds on the surface of the craters is not nearly sufficient to maintain the moonquakes during the

estimated geological time of their existence. According to Duennebier and Sutton (1974), the frequency of these

emissions is about 5Hz and their duration is more than 60 s. There is also the appearance of regular interruptions,

about every 10 cycles, suggesting stick-slip effects.

Within the context of the acoustic emissions from squeezed granular beds, it is possible that moonquakes originate

with granular material being squeezed in the cracks and crevices on the surface of the craters. During the lunar night the

temperature drops to an average of �1801C and during the day it rises to an average of 1301C (Kaufmann and

Freedman 1999). In the context of this study, the grains tend to fall into the crevices during the night and then are

squeezed during the day when the rock masses expand. In this scenario, the solar energy required for the acoustic

emissions is nearly limitless.

It was established in the previous section that the frequency of the acoustic emissions from the squeezed grains is of

the order of 1000Hz, which is about 200 times that of the moonquakes. From Eq. (18), it follows that the ratio

Vs=ldEVs=b is 200 times smaller on the moon. As in the case of the experiment by Takahara (1973), deep crevices

combined with high temperatures and low gravitational acceleration could result in a state of hyper-fluidization, where

the phase velocity Vs acquires very low values.

It has been reported recently (National Post on Discovery, 2000) that on the craters of Mars, near and facing the

poles where the temperature is at its lowest, there are erosion ridges similar to those formed on earth by flowing water.

Beside the possibility of the presence of ice under the surface, which at some time melted and caused the erosion, the

possibility of granular avalanches having caused it ought to be considered. Condensation of CO2 on the grain surface

could result in relatively low values of m and e; resulting in turn in low values of %v=Dujo: For example, in Fig. 12 the

point with m ¼ 0:22 and e ¼ 0:30 lies on the curve with %v=Dujo ¼ 2; allowing for values of Du larger than 2 cm=s: The
corresponding angle c is nearly 131; which could be considerably smaller than the surface-slope of the craters. As

%v=Du-%v=Dujo in Fig. 11, lB becomes sufficiently small to render Eqs. (A.16)–(A.21) inapplicable. From considerations

in Section 3.2, it follows that as Du is increased from about 2–7 cm/s, Z could acquire a very low value, giving rise to a

water-like fluidized bed. Clearly, the existence of such a state could have important implications in the handling and

transport of granular media.

4. Conclusions

Grain flow is a prerequisite to any sonorous acoustic activity of a granular bed. The treatment of a granular bed as a

fluidized viscous medium energized by laminar-like flow velocity gradients leads to the prediction of regions of

weakness or slip channels. These channels act as the means for grain transport and energy conversion into acoustic

modes of vibration, with frequencies defined principally in the surface boundary layer. The width of such channels and

the acoustic frequency spectra match the available experimental data fairly well. However, there is no apparent reason

why the modes corresponding to two adjacent frequencies are not equally excited. Further, the calculated values of the

linear concentration parameter lB fall in the expected range of 5–7.

The acoustic phase velocity in the slip channels has the relatively low value of 1m/s. The dominant frequency of an

acoustic emission corresponds to the frequency of the mode of vibration, in a given slip channel, having a wavelength

equal to the channel width. The effect of this mode of vibration is the increase-decrease of the distance between layers in

the vicinity of the center of the slip channel, which facilitates the slipping of the layers and the transfer of the available

mechanical energy into acoustic energy.

The coefficients of friction and restitution and the velocity ratio %v=Du completely characterize the granular bed.

The dependence of %v on Du is defined by a hysteresis loop on the %v � Du plane. For a silent granular bed, the

loop degenerates into the straight line %v ¼ Du: The degree of the sonorous property of the granular bed is related to the
size of the hysteresis loop. The lack of reproducibility of the frequency spectra can be attributed to their critical

dependence on the width and the phase velocity of the boundary layer, and to their dependence on %v=Du; which is

history dependent. In analogy with the magnetomotive force H in electromagnetism, Du can be labeled as ‘the

fluidomotive force’.

The relatively low value of Du is consistent with stick–slip, or equivalently, with compactness and delatancy effects,

which imply a hysteresis loop. The existence of the stick–slip effects is consistent with the equations of fluid mechanics.

It may be argued that the size of the hysteresis loop depends on the degree of excitation of certain elastic modes of

vibration in the grains during the compactness stage. The degree of excitation depends on the shape and surface texture

of the grains, on the rate of dissipation into heat of the elastic modes, and on the geometry of confinement of the

granular bed. Effectively, it depends on the strength of the shear stress experienced by the grains during the

compactness stage. The dependence of the degree of singability–boomability of a granular bed on the degree of
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excitation of elastic modes in the grains is quite analogous to the dependence of the degree of ringability of a regular bell

on the degree of excitation of its elastic modes of vibration. For example, a bell which has been cracked is nearly silent.

For relatively low values of the coefficients of friction m and restitution e; and for relatively high values of the velocity
ratio %v=Du; the granular bed is inherently unsingable or unboomable. However, in most cases the granular bed is silent

because the opposite is true, i.e., %v=Du is too low, resulting in very narrow slip channels placed very close to the surface,

resulting in turn in an hyper-energized surface boundary layer. In this case, the granular bed can become singable by

altering the geometry of confinement, i.e., by squeezing the grains, resulting in a higher velocity ratio. The rare nature of

the booming phenomena can be attributed to the relatively large value of the velocity ratio %v=Du: Effectively, a slight
change in the surface texture of the grains can result in a velocity ratio above the limit for boomability. Further, a

change in the surface texture can result in reduced excitation of the elastic modes of vibration in the grains during the

compactness stage, rendering the granular bed unboomable. The lack of boomability of an avalanching snow bed could

be due to the lack of a sufficiently fluidized surface boundary layer.

An increase in %v=Du in the granular beds trapped in the rock crevices on the surface of the moon’s craters could be the

cause of the observed thermal moonquakes. These quakes occur during the moon-morning hours when the rock masses

undergo expansions due to rapid temperature rise, resulting in the squeezing of the trapped grains. States of hard

compactness and of hyper-fluidity are predicted, the latter having obvious implications in the transport and handling of

granular materials. The hyper-fluidity state could also have implications on the causes of the erosion ridges recently

observed on the craters of Mars.

The conditions under which the equations of fluid mechanics are applicable to moderately fluidized granular beds

need to be investigated. The existence of modes of vibration in the sonorous granular beds is supported by the available

experimental data. Further investigations of the width of the slip channels and of the boundary layer, and of Du and lB

in these regions, will shed more light on the existence and the properties of such modes of vibration.
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Appendix A. Collision mechanics in slow granular flows

Fig. 15 depicts sphere A of radius R1 and mass m1 colliding with sphere B of radius R2 and mass m2 in the laboratory

frame specified by axes xyz: The initial and final velocities of sphere A are v1; v01 and those of sphere B are v2; v02
respectively. The axis z lies along the surface-normal at the point of contact. The angular velocity of sphere A is

x1 ¼ o1 #Z and that of sphere B is x2 ¼ o2 #Z: From the principle of conservation of linear momentum and the equation

ðv01 � v02Þ � #z ¼ �eðv1 � v2Þ � #z; ðA:1Þ

the following equations are obtained for uninterrupted sliding (Goldsmith, 1960)

v01z � v1z ¼ �
1þ e

1þ M
ðv1z � v2zÞ; ðA:2Þ

v01x � v1x ¼ �m
1þ e

1þ M
ðv1z � v2zÞ; ðA:3Þ

v02z � v2z ¼
M

1þ M
ð1þ eÞðv1z � v2zÞ; ðA:4Þ

v02x � v2x ¼ m
M

1þ M
ð1þ eÞðv1z � v2zÞ; ðA:5Þ
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where M ¼ m1=m2; m is the coefficient of kinetic friction and e is the coefficient of restitution. For interrupted sliding

with M ¼ 1; the above equations for v01z; v02z remain the same but

v01x ¼
6

7
v1x þ

1

7
Ro1; v02x ¼

1

7
v1x �

1

7
Ro1: ðA:6Þ

The expression for the maximum normal force fn at the point of contact during the collision is (Goldsmith, 1960;

Timoshenko and Goodier, 1970)

fn ¼ na3=2; a ¼
5

ffiffiffi
2

p
p

4
r
1� n2

E

" #2=5
v
4=5
1z R; ðA:7Þ

where a is the maximum surface displacement at the point of contact, R ¼ R1 ¼ R2; r ¼ particle mass density ¼
ð6=pÞm=d3; n ¼ 2=ð3pk1ÞðR=2Þ1=2; k1 ¼ ð1� n2Þ=ðpEÞ; n is the Poisson ratio and E is the Young modulus of the grains.

Further, the time of contact tc is written as tc ¼ 2:94ða=v1zÞ (Goldsmith, 1960; Timoshenko and Goodier 1970).

Shen and Ackermann (1982) used Eqs. (A.2)–(A.5) and the assumption that o1 ¼ o2 ¼ 0 to derive the following

expression for the dissipation energy averaged over the angles y; f defining the point of impact in Fig. 15.

ec ¼
1

2
mð1þ eÞ

1� e

4
þ
m
p
�
1þ e

4
m2

� �
%v
2; ðA:8Þ

Effectively, ec is the difference in the kinetic energies before and after a collision and %v is the fluctuation or the average

random grain velocity. It is assumed that due to the relatively close proximity and the generally irregular shape of the

grains, the rotational motion has minimal effect. It can be shown that with v2z ¼ 0 and o1 = o2 ¼ 0 the sliding remains

uninterrupted for a time interval Dt; which is related to tc as follows:

Dt

tc

¼ 0:54
v1xo � v2xo

mv1z
; ðA:9Þ

where v1xo and v2xo are the velocities of spheres A; B along #x at t ¼ 0: With v1xo � v2xo ¼ %v=2; v1z ¼ %v and m ¼ 0:5;
Dt=tc ¼ 0:54: However, this ratio can have larger values when the angular velocities of the grains are not zero and are

directed as shown in Fig. 15. In deriving Eq. (A.9), it was assumed that the average force at the point of contact, along
#x; during collision is equal to mðfn=2Þ: The interruption of the sliding during collision could account for the negative

Fig. 15. Schematic of the collision of two spheres, A; B; of radii R1; R2; respectively. The velocities after collision are indicated with a
prime. The laboratory frame is shown by the axes xyz; with #z out of the plane of the paper. The z axis is along the surface-normal at
the point of contact. #z has polar and azimuthal angles y; f in the xyz axes. #Z ¼ #x� #z:
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values assumed by ec for large values of m and e: However, for the values of m and e shown in Table 3 in Section 3.2, ec

has positive values.

On account of the relatively high compactness in the granular bed and the generally small value of Du= %v; the relative
velocity before collision is written approximately as

v1 � v2x #x ¼ %v #y þ Du #x; ðA:10Þ

where on average v2z is assumed to be zero and Du is the relative velocity between layers in Figs. 1 and 2. In order to

obtain expressions for v1z and v1x � v2x; the unit vectors #z; #x are expressed in terms of the unit vectors #x; #y; #z: The unit
vector #z is written in the usual way as, #z ¼ sin y cos f #x þ sin y sin f#z þ cos y #y: However, the expression for #x requires

some algebra (Shen and Ackermann, 1982). In general #x is expressed as #x ¼ a #x þ b#z þ c #y; and from the conditions
#x � #z ¼ 0; #x � ð #x � #zÞ ¼ 0; j#xj ¼ 1; it follows that a ¼ ð1� sin2 y cos2 fÞ1=2 and

b ¼ a
sin2 ysin f cos f

cos2 yþ sin2 y sin2 f
; c ¼ a

sin y cos y cos f

cos2 yþ sin2 y sin2f
: ðA:11Þ

Since y; in general, lies in the range 0oyoyoE401; c is considerably smaller than a: Further, b ¼ 0 on average when the

integration over f is effected, resulting in #x being close to #x: From Eq. (A.10), it follows that

v1z ¼ %v cos yþ sin y cos f
Du

%v

� �
; v1x � v2x ¼ %v c þ a

Du

%v

� �
: ðA:12Þ

The momentum transfers to sphere A along #z; #x during the collision are

DPz ¼ �m
1þ e

2
v1z; DPx ¼ �mm

1þ e

2
v1z; ðA:13Þ

where Eqs. (A.2) and (A.3) have been used with v2z ¼ 0 and M ¼ 1: In the laboratory frame xyz; the equations for the
momentum transfers along #x; #y are, DPx ¼ a DPx þ sin y cos f DPz and DPy ¼ c DPx þ cos yDPz:
The point of contact in Fig. 15 lies on the upper back surface of sphere B specified by the angles y0; f0; where

y0 ¼ p� y and f0 ¼ pþ f: For collisions with the contact point on the back part of sphere B; the averages of DPx and

DPy are, DPxb ¼ �A2 %vI11 � A2 DuI12 � A3 %vI13 � A3 DuI14 and DPyb ¼ �A2 %vI21 � A2 DuI22 � A3 %vI23 � A3 DuI24; where
A2 ¼ mmð1þ eÞ=2 and A3 ¼ mð1þ eÞ=2: The parameters I1j ; j = 1...4 are equal to integrations over y; f; divided by pyo;
of the following functions respectively, a cos y; a sin y cos f; sin y cos y cos f and sin2 y cos2 f: For the parameters I2j ;
j ¼ 1y4; the following functions apply, c cos y; c sin y cos f; c cos2 y and sin y cos y cos f: The limits in the angle f are

from �p=2 to p=2 and in the angle y from 0 to yo; where yo is obtained from Eq. (28). In the context of the present

study, the limit angle yo assumes values around 401; while in Shen and Ackermann (1982) it was assumed to be 901;
reflecting a considerably reduced compactness. With yo ¼ 401; the numerical values of Iij are

I11 ¼ 0:8873; I12 ¼ 0:1970; I13 ¼ 0:1884; I14 ¼ 0:0736;

I21 ¼ 0:1807; I22 ¼ 0:0701; I23 ¼ 0:8526; I24 ¼ 0:1884: ðA:14Þ

For collisions with the contact point on the front part of the sphere B; the expressions for the momentum transfers are,

DPxf ¼ �A2 %vI11 þ A3 %vI13 and DPyf ¼ A2 %vI21 � A3 %vI23: The terms due to Du are absent in this case and the terms

containing the integrals I13; I21 change sign due to the presence of cos f:
The normal and the tangential forces per unit area exerted by the layer below on the layer above along � #y and � #x are

the pressure p and the shear stress s: With the number of collisions per second between grains A; B assumed to be

1=2ð%v=sÞ and the number of grains per unit area being equal to 1=ðd þ sÞ2; the expressions for s and p become

s ¼ DPx
1

ðd þ sÞ2
1

2

%v

s
; p ¼ DPy

1

ðd þ sÞ2
1

2

%v

s
; ðA:15Þ

where, DPx ¼ DPxb þ DPxf and DPy ¼ DPyb þ DPyf : It follows that

s ¼ q1r
d

s
%v
2; ðA:16aÞ

or

s ¼ q01r
d

s
%v Du; ðA:16bÞ
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and

p ¼ q2r
d

s
%v
2; ðA:16cÞ

where

q1 ¼
1þ e

4
2mI11 þ ðmI12 þ I14Þ

Du

%v

� �
; ðA:17aÞ

q01 ¼ q1
%v

Du
; ðA:17bÞ

q2 ¼
1þ e

4
2I23 þ ðmI22 þ I24Þ

Du

%v

� �
: ðA:18Þ

Eq. (A.16c) is referred to as the equation of state in Haff (1983). The dynamic angle of sliding c is defined as

tan c ¼
s
p
¼

q1

q2
: ðA:19Þ

For %v=Duc5; about, it reduces to tan cE mðI11=I23Þ: In general, c depends weakly on Du=%v since the dominant integrals
are I11 and I23: The viscosity coefficient Z is defined by the equation

s ¼ �Z
du

dy
: ðA:20Þ

From Eq. (A.16) and with du ¼ Du; dy ¼ d ; the expression for Z becomes

Z ¼ q01rd2 %v

s
or Z ¼

q01
q2

pd

%v
: ðA:21Þ

From Eq. (A.17b), Z can be written similarly with q1=Du in place of q01=%v: In the context of the kinetic theory of gases, Z
is proportional to Du according to Thompson (1993). From Eq. (A.21), with q1 ¼ 0:5; %v=Du ¼ 5; %v ¼ 10 cm=s; r ¼
1700 kg=m3; d ¼ 0:5 mm; lB ¼ 10; Z ¼ 2 kg/(ms), while Z for water at 201C is 10�3 kg/(ms).

In the context of the theory of fluid mechanics (Haff, 1983; Ryhming, 1985; Lu, 1973), the equation of motion of a

fluidized grain bed becomes the Navier–Stokes equation, i.e.,

@

@t
ðruiÞ ¼ �

@p

@xk

dik � ruk

@ui

@xk

þ
@

@xk

Z
@ui

@xk

þ Z
@uk

@xi

� �
þ rgi; ðA:22Þ

where r is the mass density, ui are the particle velocity components and gi are the gravitational acceleration

components. Effectively, the left-hand side is the mass per unit volume times the acceleration, while the right-hand side

is the sum of all forces acting on the unit volume. The indices i ¼ 1; 2, 3 and k ¼ 1; 2, 3 correspond to the axes xyz in

Fig. 2 and the repeated index k implies summation over k:With i ¼ x; uy ¼ uz = 0 and no variation with respect to x; z;
Eq. (A.22) reduces to

r
@ux

@t
¼

@

@y
Z
@ux

@y

� �
þ rgx: ðA:23Þ

A similar equation can be written for p; with i ¼ y: For steady state motion @ux=@t ¼ 0; @uy=@t ¼ 0; resulting in

s ¼ rgxy þ C1; ðA:24aÞ

p ¼ rgyy þ C2: ðA:24bÞ

In the case of the avalanching sand, C1 and C2 are 0. The energy equation for a fluidized granular bed is (Haff, 1983;

Ryhming, 1985)

@

@t

1

2
ru2 þ

1

2
r%v2

� �
¼ �

@

@xk

ruk
p

r
þ
1

2
u2 þ

1

2
%v
2

� �
� Zui

@ui

@xk

�

�K
@

@xk

1

2
r%v2

� ��
þ ruigi � I ; ðA:25Þ

where I is the energy sink, i.e., the energy converted into heat per unit volume per second due to the inelastic nature of

the grain collisions and K is the thermal diffusivity coefficient. In the steady state without variation with x; z and with
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k ¼ y; uz ¼ 0; Eq. (A.25) reduces to

@

@y
Zux

@ux

@y
þ K

@

@y

1

2
r%v2

� �� �
þ ruxgx þ ruygy �

@

@y
ðpuyÞ � I ¼ 0: ðA:26Þ

In deriving Eq. (A.26), the terms ð1=2Þu2; ð1=2Þ%v2 were omitted in comparison with p=r ¼ ghE1 for the avalanching

sand. The error in omitting these terms is even smaller for the forced sand. It is shown in Section 2.2.2 that uy{ux;
implying that the term Zuyð@uy=@yÞ can be neglected in comparison with the term Zuxð@ux=@yÞ:
The term @=@y½K@=@yðð1=2Þr%v2Þ
 is viewed as the divergence along #y of the fluidization energy flux density Q; defined

as

Q ¼ K
@

@y

1

2
r%v2

� �
: ðA:27Þ

Haff (1983) argued that the mean fluidization energy transfer per unit area per second along #y can be written as

Q ¼
m%v D%v

d2

%v

2s
¼ d2 %v

2s

d

dy

1

2
r%v2

� �
; ðA:28Þ

where D%v is the fluctuation velocity difference between adjacent layers. Comparison with Eq. (A.27) reveals that

K ¼ d2 %v

2s
: ðA:29Þ

Upon using Eqs. (A.20) and (A.24), Eq. (A.26) reduces to

s2

Z
þ K

@2

@y2
1

2
r%v2

� �
þ

@K

@y

@

@y

1

2
r%v2

� �
� p

@uy

@y
� I ¼ 0: ðA:30Þ

From Eq. (A.24b), it follows that the terms �@p=@y and rgyuy cancel out in Eq. (A.26). The term s2=Z represents the

mechanical energy input into the granular bed per unit volume per second by the shear forces driving it. This can be

seen by expressing this energy input as, sDu=d ¼ s@uy=@y ¼ s2=Z; from Eqs. (A.20) and (A.24). Similarly, the term

�p@uy=@y ¼ �p Duy=d represents the mechanical energy flowing out of the granular bed per unit volume per second

during delatancy, where the velocity Duy is the difference in uy between adjacent layers. The dissipation energy I is

written as I ¼ ecðrc=d3Þ; where ec is given by Eq. (A.8) and rc; the collision rate, is given as rc ¼ 1=2ð%v=sÞ: Consequently,
the expression for I becomes

I ¼ Gr
%v3

s
; G ¼

1þ e

4

1� e

4
þ
m
p
�
1þ e

4
m2

� �
: ðA:31Þ
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